Isometry groups of proper CAT(0)-spaces of rank one

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 Isometry Groups of Proper Hyperbolic Spaces

Let X be a proper hyperbolic geodesic metric space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not elementary then for every p ∈ [1, ∞) the second continuous bounded cohomology group H 2 cb (G, L p (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

متن کامل

Isometry Groups of Proper Cat

Let X be a proper CAT(0)-space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is non-elementary and contains a rank-one element then its second bounded cohomology group with coefficients in the regular representation is non-trivial. As a consequence, up to passing to an open subgroup of finite index, either G is a compact extension of a totally disconnected ...

متن کامل

Isometry Groups of Separable Metric Spaces

We show that every locally compact Polish group is isomorphic to the isometry group of a proper separable metric space. This answers a question of Gao and Kechris. We also analyze the natural action of the isometry group of a separable ultrametric space on the space. This leads us to a structure theorem representing an arbitrary separable ultrametric space as a bundle with an ultrametric base a...

متن کامل

. G R ] 1 6 M ar 2 00 8 ISOMETRY GROUPS OF PROPER HYPERBOLIC SPACES

Let X be a proper hyperbolic geodesic metric space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not elementary then for every p ∈ (1, ∞) the second continuous bounded cohomology group H 2 cb (G, L p (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

متن کامل

. G R ] 3 0 Ju l 2 00 6 ISOMETRY GROUPS OF PROPER HYPERBOLIC SPACES

Let X be a proper hyperbolic geodesic metric space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not elementary then for every p ∈ (1, ∞) the second continuous bounded cohomology group H 2 cb (G, L p (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Groups, Geometry, and Dynamics

سال: 2012

ISSN: 1661-7207

DOI: 10.4171/ggd/166